

the clean
energy
heavy
lifter
A massive transition is underway as major populations in emerging economies access modern infrastructure. This is a time of great challenge and opportunity as unprecedented demand is placed on healthcare, education, water, food, transportation and energy. At their foundation is power, and we need to transform how we produce it in order to protect the planet while advancing a more abundant and equitable future for all.
Fusion energy is the clean power at the center of stars. Mastered here on earth, its unique advantages will rapidly disrupt carbon-based fuels to become the primary form of baseload power on the planet.
The stellarator is a fusion power system that uses magnetic fields to confine ionized gas to fusion conditions using fuel obtained from water. Its inherently practical features make it highly attractive to utilities for 24/7 baseload operation that can be deployed almost anywhere. Under development by various nations, the stellarator has been making tremendous strides in recent years towards the goal of generating surplus power, the Kittyhawk moment for fusion.
Type One Energy is founded by experts and technology from the University of Wisconsin, a world leader in stellarator R&D, with the mission to provide clean, affordable fusion power to every city across the globe. In collaboration with its public and private partners, Type One bridges lab-to-market by uniting the outstanding operation of the stellarator with breakthroughs in theory, additive manufacturing, and high temperature superconducting magnets for an economical fusion power plant deployed worldwide in the shortest amount of time.
FUSION
ENERGY
POWER TO
TRANSFORM THE ENERGY LANDSCAPE
FUEL FROM WATER
Deuterium (H2 or D), a natural hydrogen isotope contained in water, is fused to produce tremendous energy that is four million times more powerful than chemical reactions, such as burning fossil fuels, and four times more than nuclear fission. Costing less than $1 per gram, deuterium is extracted using a simple, established, and environmentally benign industrial process. With only half a gram needed to power an average home for a year, deuterium fuel amounts to much less than one percent the cost of electricity with enough in seawater alone to power the globe for millions of years.
NO HARMFUL IMPACT
The deuterium fuel used in a fusion power system produces inert helium. No emissions contributing to climate change or pollution are created. There is no carbon footprint from mining, refining, or major transport, as is common with other forms of fuel. The extraction of deuterium has no effect on the water and is restored to the source.

EVERY
DROP
OF WATER
IS 0.03%
DEUTERIUM
BY MASS
NO MELTDOWNS OR RADIOACTIVE FUEL WASTE
No mechanism for a runaway reaction exists, and any form of meltdown is physically impossible. In the event of an operational failure, the fusion process instantly ceases. There is no fissile material or spent radioactive fuel to store. Neutron activated materials produced by fusion are recycled and cleared for commercial reuse.
SECURE & STEADY
An unvarying and continuous supply of electricity is generated 24/7 by a stellarator power plant. Since the fuel is ubiquitous, near limitless, and very low cost, resource constraints arising from geopolitics, supply issues, and commodity prices, become a thing of the past.
DISPATCHABLE
Hydrogen is cleanly produced from the deuterium extraction process and is perfectly suited as an energy storage medium for instant load following using existing industrial-scale equipment.
DEPLOYABLE
Fusion power systems can be sized to support localized grids with siting suitable for urban areas right where the energy is used, avoiding the costs of long distance transmission.
STELLARATOR
CLEAN BASELOAD POWER
FOR MODERN NATION BUILDING
The stellarator is a innovative marriage of elegant physics, engineering artistry, and practical utility.
Invented in the United States by Dr. Lyman Spitzer in 1951, the stellarator uses shaped magnetics to confine extremely hot charged gas along a twisting circular path. The complex magnetic fields are designed to optimally and quiescently confine the hot plasma.
CONFINED PLASMA

ELECTROMAGNETS
RELIABLE
The stellarator is inherently stable and simple to operate since its performance is controlled only by the fields generated by the external magnets. This removes the need to run a current in the plasma as required by other fusion concepts, which makes them prone to major disruption events that can cause operational failure, damage the device, and degrade fusion performance. Plasma currents also necessitate major equipment, operational, and power requirements to monitor and mitigate these disruptions.
EFFICIENT
For fusion systems driving a plasma current, a DC transformer is used, which must cycle from start, ramp to a peak, and cease. As a result, the power plant must operate in pulsed mode, resulting in lower power output efficiency, and increased maintenance and downtime from thermal and mechanical cycling stress. In contrast, a stellarator maintains a persistent fusion plasma that produces energy without cessation.
POWERFUL
Given that no power is required to drive a current or manage disruption events, a stellarator requires the minimum amount of recirculated energy to maintain the fusion process. This provides the stellarator with a high fusion energy gain factor (Q), an important feature for an efficient electricity generating power plant. The higher the Q, the more economically competitive a fusion power plant will be. Stellarators have the potential to reach infinite Q whereby the energy produced from the fusion plasma becomes self-sustaining requiring no external power to maintain it. This is referred to as "ignition."
The external
twisted magnetic fields keep the fuel particles from
drifting away from where they fuse.
SIMPLE & STABLE

DRIVEN ONLY BY
EXTERNAL MAGNETIC FIELDS
(NO DISRUPTIONS)
STEADY STATE

CONTINUOUS OPERATION
(NO PULSING)
HIGH ENERGY GAIN

LOW RECIRCULATING
POWER REQUIRED
Photo by Al Fenn/The LIFE Picture Collection via Getty Images
CC BY-SA 3.0 Max-Planck-Institut für Plasmaphysik
Photo by Al Fenn/The LIFE Picture Collection via Getty Images
standout performance
A SHORTER PATH TO NET POWER
There are three key factors that determine fusion performance: the density and temperature of the ions undergoing fusion and the energy confinement time - how long the energy is retained in the fusion plasma until it is lost to the surroundings. This is known as the "triple product."
Tokamaks and stellarators are the two leading fusion power systems that have broken away from the pack in the race to reach NET POWER, a milestone comparable to the first powered flight by the Wright brothers. Alternative concepts being pursed by fusion startups are making progress but remain many orders of magnitude lower in performance.

Stellarators have demonstrated high levels of performance in each of the triple product categories:
DENSITY
TEMPERATURE
TIME
116
4.5
x 10
20
per meter
(ion)
3
million
o
(electron)
41
250
million
o
(ion)
milliseconds
(energy conf.)
100
seconds
(discharge)
After many decades of research, the performance of stellarators has been shown to scale very predictably given its simplicity of operation and proven plasma stability at these high ion and electron energy levels. This reduces the risk of unforeseen physics complications that can occur with other fusion concepts when progressing into the net gain energy regimes needed for commercial operation.
=
LOWER
R&D RISK
PREDICTABLE
SCALING
OPTIMIZATION
A BREAKTHROUGH IN CONFINEMENT
Unlike tokamaks that operate in pulses with susceptibility to disruptions, stellarators can work continuously free of disruptions. However, conventional stellarators have lagged behind tokamak performance because they do not posses the simple circular symmetry of the tokamak, which was better at confining the plasma. This has all changed with the groundbreaking discovery in the 1980s by Jürgen Nührenberg and Allen Boozer of a hidden symmetry in stellarators realized by precisely contouring their magnetic fields so that the various forces causing the particles to drift, cancel each other out. This "quasi symmetry" was the dawn of the modern "optimized" stellarator with its characteristic organic shape.
Because confinement of the plasma in a stellarator is driven solely by the external magnets, modifying their fields has a major impact on performance. To tailor a three-dimensional magnetic field with precisely the right shape to achieve quasi-symmetry requires extensive calculations. Advances in computer modeling code and high performance computing has provided this ability. These powerful tools have resulted in an entirely new class of stellarator optimized for superior confinement and fusion performance.

In 2007, proof for the benefits of magnetic field shaping were first demonstrated with HSX - the world's first optimized stellarator designed and built by Type One co-founders Prof. David Anderson and the German theorists who conceived of and designed the original quasi-helically symmetric stellarator. HSX measured 2.4 meters in diameter and cost USD $7.5 million to build. Due to its optimized configuration, HSX proved superior confinement via strong reductions in neoclassical transport, a previously untamed loss mechanism that causes particles and heat to leak from the plasma. HSX continues to operate and has undergone a recent $7 million power upgrade to extend its research capabilities.
HSX



3D shaping to minimize neoclassical transport was further demonstrated with W7-X in Germany, a $1.2 billion statement of conviction for optimized stellarators by the German government. The largest experimental stellarator to date (5.5 m major radius), W7-X went online in 2015 and in 2018, it achieved a world record for stellarator fusion performance with the greatest triple product to date. With cooling system upgrades currently underway, it is targeted in 2022 to reach performance levels comparable to that of tokamaks and at run times of 30 minutes. This will be an unprecedented duration for any fusion system.

-X
W
7

OPTIMIZING FOR TURBULENCE
While mitigating neoclassical transport was a major leap forward, the largest loss channel limiting fusion performance in a stellarator is turbulence, which determines the energy confinement time. With turbulence, small eddies cause hot particles from the plasma to escape, reducing the thermal insulation that maintains the rate of fusion at its core.

Given the complexity of the physical process, the analytical tools to address turbulence did not exist at the time that HSX and W7-X were designed. Newly developed and highly sophisticated three-dimensional, gyrokinetic turbulence codes for simulating stellarator physics, combined with high performance computing, have sufficiently advanced to meet this challenge. The resulting stellarator designs generate a new class of high performance plasmas, which will realized in the next Type One stellarator: STARBLAZER I.

Turbulence is the largest source of energy loss
for a compact stellarator.
Recent breakthroughs
in stellarator design
code enables plasma
turbulence to be
strongly suppressed.

GAME CHANGERS
KEY ENABLING TECHNOLOGIES
In addition to providing reliable and abundant power when and where it is needed, a stellarator power plant must be cost-competitive to build and operate. This is now possible due to three transformational capabilities being applied by Type One in collaboration with our academic, national lab, and corporate partners:
OPTIMIZATION
1

Advancements in analytical theory, supercomputing and sophisticated codes uncover previously hidden magnetic field configurations that provide optimal confinement of the plasma for the largest and most efficient power generation.
2
ADVANCED MFG

Generative design with hybrid additive manufacturing, advanced materials, and robotic automation enables the rapid, large scale build of highly optimized, complex-shaped, dimensionally-accurate, and defect-free stellarator components to net shape.
3
HTS MAGNETS

New high-temperature superconducting
(HTS) magnets can carry over 200 times the current carrying capacity of copper wires for a more compact stellarator. It also requires less cooling power than conventional low temperature magnets.
.png)
starblazer
FUSION MADE FOR MASS ADOPTION
With HSX, a quasi-helical stellarator (QHS), there was successful agreement of theory and design to the real-world experiment. We know that QH stellarators can be built and with key physics benefits of the quasi-helical configuration demonstrated. Many of the physics properties of QHS are equivalent to the beneficial features of the tokamak, but without the plasma current instabilities, disruptions, and high recirculating power requirement.
STARBLAZER is a new stellarator currently under design by Type One that incorporates advanced optimization to dramatically reduce both neoclassical and turbulent transport - another world first. Optimizing confinement as a function of magnetic geometry addresses performance at the foundation level to avoid design pathways that would result in a much larger, less versatile, and more expensive power unit.

Quasi-helical
symmetric
magnetic field
configuration optimized
to control losses from neoclassical and
turbulent
transport.
To extend stellarator fusion performance into the net power regime, STARBLAZER I will be designed for above breakeven energy for hours (Q>1), and followed by STARBLAZER II, that will achieve "steady state" continuous operation (Q=infinity)

Adapted from Phys. Plasmas 26, 082504 (2019); https://doi.org/10.1063/1.5098761
LHD - Large Helical Device Stellarator (Japan - National Institute for Fusion Science)
W7-X - Wendelstein 7-X (Germany - Max Planck Institute for Plasma Physics)
To reduce build time and cost, STARBLAZER I will incorporate generative-designed and additive-manufactured components, which include the magnet assemblies, magnet support shell, heat exchanger, and vacuum vessel:

In parallel, Type One is actively developing the world's first HTS stellarator magnet with a grant from the US Department of Energy ARPA-E BETHE fusion program, in collaboration with the MIT Plasma Fusion Science Center and the University of Wisconsin at Madison.
A high
temperature superconducting stellarator magnet
with additive
manufactured
assemblies.
_e.png)
funded by




TM
Type One is developing from the ground up NEBULA - a proprietary large format, selective high precision additive and subtractive manufacturing platform made for the economical mass production of major fusion components.
DIMENSIONAL
TOLERANCE
+/-0.25 mm
MATERIAL
DENSITY
>99%
PRODUCTION
COST
SAVINGS
70%
OPEN AIR
MAX BUILD
ENVELOPE
200 m
REDUCE
PRODUCTION
TIME
70%
3
STRESS
INDUCED
CRACKS
0%
REDUCE
PRODUCTION
WASTE
85%
TOOLING
REDUCTION
>80%
WEIGHT
SAVINGS
40%
INCREASED
PART
CONSOLIDATION
10:1
NEBULA

TECH-TO-MARKET
PATH TO A PILOT POWER PLANT
The commercialization campaign has three phases with technical milestones tied to two iterative stellarator builds demonstrating progressive gains in performance, simplification, and cost through the parallel application of 3D magnetic field optimization, industrial additive manufacturing, and non-planar high temperature superconducting electromagnets:
PHASE
1
PHASE
2
PHASE
3


Phase 1 is underway and initiatives include:
Additive Manufacturing
● version one in-house build-out of the NEBULA platform
● development of the magnet support shell, vacuum vessel, and divertor
● characterize and qualify AM metal-matrix composites for shielding
with embedded functional particles for thermal, neutron flux, and fatigue resistance
Optimized Stellarator
● physics, conceptual, and engineering design of the STARBLAZER stellarator
HTS Magnets
● build of the world's first HTS stellarator magnet in collaboration with MIT-PSFC,
Commonwealth Fusion Systems, University of Wisconsin, and funded by the US Dept. of
Energy Advanced Research Projects Agency-Energy (ARPA-E) under the BETHE fusion
Phase 2 will see the rapid, lean and low-cost AM build of STARBLAZER I a high-field stellarator devoted to demonstrating a net power regime (D-D equivalent, Qsci>1) using the advanced 3D field-optimized configuration.
Phase 3 executes on the build of STARBLAZER II which incorporates extensive AM components, HTS magnets, and an integrated shield/heat exchange blanket for the most compact and durable radial build.
The keystone deliverable of STARBLAZER II will be the demonstration of ignited net fusion energy generating power continuously at commercial levels. This will be a a "triple net" measure that factors in total "wall plug" input energy used by the power system, the losses from converting the fusion energy into electricity, as well as any recirculating energy fed back into the system.
IGNITED
OPERATION
SELF-SUSTAINING
FUSION PLASMA
STARBLAZER II will be paired with established Brayton thermal cycle technology that employs supercritical CO2 as the working medium to drive a high-heat turbine for a power conversion efficiency target of over 43%.
Although deuterium fuel is economically available in large quantities from major industrial gas suppliers, Phase 3 will demonstrate an on-site, end-to-end, water-fusion-electricity solution, using a Liquid Phase Catalytic Exchange (LPCE) column to highly concentrate liquid deuterium from water and extract it as a gas using PEM-based electrolysis. In regions with multiple Type One power plant installations, the use of a centralized deuterium fuel production facility can be deployed to service multiple power plants and well as produce clean hydrogen for transport and industrial uses.
The stellarator power unit is designed to provide a steady output of baseload power at its rated capacity with surplus electricity able to be stored as hydrogen for instant grid balancing or sold for fuel cell transportation and industrial processes.
"INGITED"
SELF-SUSTAINING
NET POWER
(NO EXTERNAL
HEATING REQUIRED)
SUPERCRITICAL
CO2
BRAYTON
CYCLE
ON-SITE
DEUTERIUM
AND CLEAN
HYDROGEN
PRODUCTION
ECONOMICAL POWER PLANT
DESIGNING FOR RAPID & WIDESPREAD ADOPTION
DEUTERIUM FUEL
AND HYDROGEN
FROM WATER
(ON-SITE OPTIONAL)
FUSION
BYPRODUCTS
PROCESSING
500MWe D-T
STELLARATOR
UNIT & HEAT EXCHANGER
SUPERCRITICAL
CARBON DIOXIDE
BRAYTON CYCLE
SURPLUS ELECTRITCY STORED AS HYDROGEN FOR INSTANT GRID BALANCING OR SALE (OPTIONAL)
ELECTRICAL SWITCH
YARD

Stellarator physics are inherently suited for power plant operation:
LOW RECIRCULATING POWER
ENERGY EFFICIENCY
STEADY STATE OPERATION
SYSTEM RELIABILITY
NO CURRENT DISRUPTIONS
INVESTMENT SECURITY
STABLE PLASMA OPERATION
OPERATION ROBUSTNESS
HIGH DENSITY OPERATION
MAXIMIZE SYSTEM OUTPUT
In addition, to disrupt carbon-based fuels, a fusion power plant must meet a combination of low capital costs, rapid construction time, low downtime, and ease of maintenance. The combination of additive manufacturing, high magnetic field, and supercritical water thermal cycle offers the best path for a stellarator plant to achieve these objectives. The following non-subsidized costs are targeted for 10th-of-a-kind power units and nth-of-a-kind balance of plant:
TARGETS
$1.2
billion
TOTAL CAPITAL COST
24
months
CONSTRUCTION TIME
>85
percent
CAPACITY FACTOR
¢3.8
kw-hr
COST OF ELECTRICITY
500
MWe
GENERATION PER POWER UNIT
>43
percent
ENERGY CONVERSION
40
full power
years
PLANT LIFETIME


deployment
FOR RAPID MARKET CAPTURE
REVENUE STRATEGY
Revenues will be generated through the mass production and sale of stellarator power units produced from Type One Staryards strategically located in major markets to remove the high cost and time of transporting large components overseas. A blend of pre-assembled and in inventory components with just-in-time, rapid additive manufacturing will be employed to meet a 2-year plant installation and commissioning target. To participate in revenues from the sale of electricity (~$1.3 trillion per year addressable market), Power Purchase Agreements (PPA) will be secured with utilities and partner deployment firms specializing in Engineering, Procurement, Construction (EPC), as well as Operating and Maintenance (O&M).
MARKET SIZE
Approximately 300 quadrillion BTUs ("quads") of new energy are required by 2050 (US IEA) to meet demand, raising total global energy consumption to 911 quads. This translates to roughly $50 trillion in cumulative investments in generation over the same period. Carbon-based energy is projected to lose 11% of market share during this period but will still comprise a majority share of the energy mix at 69%. This amounts to 125 quads in new carbon-based energy generating 3.6 billion tonnes of additional CO2 per year in 2050.
Energy Mix
5%

SEGMENTATION
Type One will initially focus on intercepting new natural gas, coal, and diesel generating capacity in the 1 GWe and greater range and replacement of decommissioned plants for heat and electricity in the emerging markets of OECD Asia. This market represents:
● the largest and fastest-growing region in the world for energy consumption (a projected
70% increase from 2018 to 2050)
● new baseload power plants averaging 820 MWe (natural gas) to 1100 MWe (nuclear)
● high fractions of fossil fuels in their energy mix (e.g. China and India draw more than 70%
of their electricity from coal - US EIA).
Type One will spearhead fusion industry-led initiatives for regions to adopt regulations and licensing appropriate for fusion (already underway in the US), provide government loan guarantees on construction, and offer fusion subsidies to utilities.
DISPLACE
CARBON-BASED
NEW
GENERATION
IN OECD
ASIA
FOR >500MWe
BASELOAD
WITH HIGH % OF
INDUSTRIAL LOAD
FUSION
SUBSIDIES
CLEAN POWER
INVESTMENTS
GOV LOAN
GUARANTEES
ENERGY
DEPENDENCY
GEOPOLITICAL
PRESSURES
REGIONAL
FACTORS
CARBON
TAX
REGULATORY
FRAMEWORK
MANDATED COAL RETIREMENT
EARLY ADOPTER
CULTURE
POLLUTION
LEVELS
Making up more than half of global energy consumption, the biggest challenge is the decarbonization of industry, which include energy intensive applications such as making steel and cement, desalinization, and upcoming atmospheric decarbonization deployments.

PROCESS & DISTRICT
HEATING
High heat for cement, steel, glass, chemicals, and other uses is 32% of global energy use.

DESALINATION
By 2050, over half of the global population will live in water stressed areas.

ATMOSPHERIC
DECARBONIZATION
Direct air capture requires a whopping
8.8 gigajoules of energy per ton of CO2.

MEDICAL ISOTOPE
PRODUCTION
Long half-life isotopes are produced by only 8 nuclear reactors and flown worldwide.

HYDROGEN PRODUCTION
95% of hydrogen fuel is made with methane, a fossil fuel input that emits carbon dioxide.
POWERING THE HYDROGEN ECONOMY
Currently, 95% of the world's hydrogen fuel is made by reforming methane, which is energy intensive, requires fossil fuel inputs and emits carbon dioxide. In contrast, hydrogen-from-fusion can be economically generated at industrial scale and stored as an emissions-free byproduct of both the deuterium extraction process and fusion reactions. These factors will be a major cost and ecological enabler for the proliferation of hydrogen applications in stored heat and power, industry feedstock, and fuel cell electric vehicles (a 2018/2020 KPMG study discovered that 78% of automobile executives think that hydrogen fuel cell electric vehicles will be the future and 84% think that FCEVs will experience their breakthrough in industrial transportation – particularly where batteries become too heavy for heavy duty trucks above 34 tonnes).
TEAM


Randall Volberg
CHIEF MANUFACTURING OFFICER
CO-FOUNDER
For over 25 years, Randall has been a serial startup entrepreneur, business development director, and R&D project manager across numerous technology sectors from concept to acquisition. A fusion energy enthusiast from the age of eight, Randall has been contributing to the growth of the fusion R&D community full time since 2014, serving in various leadership capacities that focus on broadening the fusion ecosystem of research, private finance, industry collaboration, government support, and NGO advocacy.
Randall has spent two years directing the company's advanced manufacturing & materials initiatives funded by the US DOE.
Randall is on the Advisory Board of the Fusion Industry Association, the representative body of the international fusion startup community, a Adjunct Fellow of the American Security Project, and certified Project Management Professional (PMP).

Dr John Canik
CHIEF SCIENCE OFFICER
CO-FOUNDER
John received his PhD in Plasma Physics from the University of Wisconsin-Madison and led numerous stellarator studies at the HSX Plasma Laboratory, including landmark experiments validating the ability of optimized stellarators to reach new levels of confinement performance. In 2007, John went to work at Oak Ridge National Laboratory (ORNL) under a prestigious Wigner Fellowship. John then headed the ORNL Plasma Physics Theory Group and served as the interim Director of the ORNL Fusion Energy Division from 2019 to 2020. In 2021, John received the Fusion Power Associates Excellence in Fusion Engineering Award.

Paul Harris
CHIEF OPERATIONS OFFICER
CO-FOUNDER
Paul has 30 years of electrical engineering and company management across a range of high technology sectors including satellite control systems, nuclear detection instruments, semiconductors, electric bikes, pulsed power, and fusion energy. As an application engineer, he has taught senior engineers in high tech companies how to incorporate new technology into their designs. He is an energetic team builder and solutions-driven leader that's battle hardened to take on the challenges a startup can face.

Prof. David Anderson
CHIEF OF STELLARATOR ENGINEERING
CO-FOUNDER
David received his PhD in engineering from the University of Wisconsin in 1984 and has been a world leader in stellarator R&D for over thirty years. Within the UW-Madison College of Engineering, he established the HSX Plasma Laboratory and successfully designed, built and operated the world's first optimized stellarator, which included the in-house manufacture of the complicated magnet coils to precision tolerances. David led the engineering and experimental campaign that proved the impact of optimized stellarators to dramatically improve confinement.
David's career in plasma physics and controlled fusion includes various publications, awards and lectures for numerous graduate level courses in plasma physics and electrodynamics.

Prof. Chris Hegna
CHIEF OF STELLARATOR OPTIMIZATION
CO-FOUNDER
Chris is the director of the University of Wisconsin Center for Plasma Theory and Computation and is involved in the research activities of three magnetic confinement experiments, the HSX Plasma Laboratory, Pegasus Toroidal Experiment (PTE), and the Madison Symmetric Torus (MST). His primary field is theoretical plasma physics with an emphasis on plasma confinement using magnetic fields.
Chris is heavily involved in the U.S. fusion science program by serving on a number of workshop and conference organization committees, review panels and program advisory committees. In 2014, he received the Excellence in Plasma Physics Research Award by the American Physical Society.
RESEARCH CONTRIBUTORS

Dr. Aaron Bader
RESEARCH SCIENTIST
Aaron is a research scientist at the University of Wisconsin-Madison active in the field of computational stellarator research since 2012. His topics of interest include edge plasma physics, divertor design, energetic particle transport and coil optimization. He is spearheading optimization efforts to advance the quasihelically symmetric stellarator design utilized by STARBLAZER. He received his PhD from MIT in 2011 working on the Alcator C-Mod tokamak.

Asst. Prof. Lianyi Chen
ADDITIVE MANUFACTURING - MATERIAL SCIENCE
Asst. Prof. Lianyi Chen holds a Ph.D. in Materials Science and Engineering from Zhejiang University and joint affiliations with the Metals Design and Manufacturing Laboratory at the University of Wisconsin-Madison, the Missouri S&T Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, and Center for Aerospace & Manufacturing Technologies.
Lianyi's expertise is at the intersection of AM manufacturing, materials science, and nanotechnology. His specializations include new materials, metallurgy, and processes for metal additive manufacturing, metals nanoprocessing, smart manufacturing using advanced sensing and control technologies, metal matrix nanocomposites, lightweight and refractory metals, metallic glasses and in-situ microstructure characterization.
Lianyi has developed a customized laser powder bed AM system and laser blown powder DED system for in-situ high-speed x-ray imaging/diffraction research, as well as led multiple AM projects funded by NSF, DOE’s KCNSC, and Boeing. He has published over 50 papers in peer-reviewed journals, including 1 in Nature, 1 in Nature Communications, 2 in Physical Review Letters, and 4 in Acta Materialia. He is also an inventor of 6 patents.

Dr. Ben Faber
ASSISTANT SCIENTIST
Ben holds a PhD in Physics for the University of Wisconsin-Madison, and is an expert on turbulence in stellarator devices. A computational physicist by training, he currently holds a staff scientist position in the Department of Engineering Physics at UW-Madison working on building new tools and infrastructure for stellarator optimization, with a focus on turbulent optimization.

Luquant Singh
Electrical Engineer
Luquant is an Electrical Engineering PhD student at UW-Madison interested in stellarator design and manufacturing. He has been a member of the HSX Plasma Laboratory for nearly four years, recently joining the lab as a graduate student. His current work is focused on improving the design of stellarator coils using computational methods.

Dr. Don Spong
Stellarator Plasmas and Computation Physics
Don is a Distinguished R&D staff member in the Theory and Modeling group within the Fusion Energy Division at Oak Ridge National Laboratory. He received his PhD in Nuclear Engineering - Plasma Physics from the University of Michigan. Don’s interests are in energetic particle confinement/instabilities, runaway electron physics, and neoclassical transport in 3D systems. He helped develop the stellarator optimization and analysis methods used for the QPS/NCSX compact stellarator projects. He has served two appointments as a visiting professor at the institute (NIFS) which operates Japan’s largest stellarator project (LHD). He currently serves as the topical group leader for the energetic particle physics ITPA group that advises ITER.

CONTACT
TYPE ONE
ENERGY
MAILING ADDRESS
345 W Washington Avenue
3rd Floor
Madison, Wisconsin
USA 53703
EMAIL & PHONE
projects@typeoneenergy.com
Tel: 1 608 888 2798
For any general inquiries, please fill in the following contact form: