practical 

widespread

fusion power.

A massive transition is underway as major populations in emerging economies access modern infrastructure. This is a time of great challenge and opportunity as unprecedented demand is placed on healthcare, education, water, food, transportation and energy. At their foundation is power, and we need to transform how we produce it in order to protect the planet while advancing a more abundant future for all.

Fusion energy is the clean power at the center of stars. Mastered here on earth, its unique advantages will rapidly disrupt carbon-based fuels to become the primary form of energy on the planet.

The stellarator is a fusion power system that uses magnetic fields to confine ionized gas to fusion conditions using fuel obtained from water. Its inherently practical features make it highly attractive to utilities for 24/7 baseload operation that can be deployed anywhere. Under development by various nations, the stellarator has been making tremendous strides in recent years towards the goal of generating surplus power.

Type One Energy is founded by experts and technology from the University of Wisconsin, a world leader in stellarator R&D, with the mission to provide clean fusion power to every industry, city, and town across the globe. In collaboration with its public and private partners, Type One bridges lab-to-market by uniting the outstanding operation of the stellarator with breakthroughs in theory, additive manufacturing, and high temperature superconducting magnets to realize an economical fusion power plant for worldwide adoption in the shortest amount of time.

FUSION

ENERGY

POWER TO

TRANSFORM THE ENERGY LANDSCAPE

FUEL FROM WATER

 

Deuterium (H2 or D), a natural hydrogen isotope contained in water, is fused to produce tremendous energy that is four million times more powerful than chemical reactions, such as burning fossil fuels, and four times more than nuclear fission. Costing less than $1 per gram, deuterium is extracted using a simple, established, and environmentally benign industrial process. With only half a gram needed to power an average home for a year, deuterium fuel amounts to much less than one percent the cost of electricity with enough in seawater alone to power the globe for millions of years. 

NO HARMFUL IMPACT

 

The deuterium fuel used in a fusion power  system produces inert helium, which is a valuable commodity. No emissions contributing to climate change or pollution are created. There is no carbon footprint from mining, refining, or major transport, as is common with other forms of fuel. The extraction of deuterium has no effect on the water and is restored to the source.

EVERY
DROP
OF WATER
IS 0.03%
DEUTERIUM
BY MASS
NO MELTDOWNS OR RADIOACTIVE FUEL WASTE

No mechanism for a runaway reaction exists, and any form of meltdown is physically impossible. In the event of an operational failure, the fusion process instantly ceases. There is no fissile material or spent radioactive fuel to store. Neutron activated materials produced by fusion are recycled and cleared for commerial reuse.

SECURE & STEADY

 

An unvarying and continuous supply of  electricity is generated 24/7 by a stellarator power plant. Since the fuel is ubiquitous, near limitless, and very low cost, resource constraints arising from geopolitics, supply issues, and commodity prices, become a thing of the past.

DISPATCHABLE

 

Hydrogen is produced from the deuterium extraction process and is perfectly suited as an energy storage medium for instant load following using existing industrial-scale equipment.

DEPLOYABLE

 

Fusion power systems can be sized to support localized grids with siting suitable for urban areas right where the energy is used and regardless of geographic location.

 

STELLARATOR

CLEAN BASELOAD POWER

FOR MODERN NATION BUILDING

The stellarator is a innovative marriage of elegant physics, engineering artistry, and practical utility.

Invented in the United States by Dr. Lyman Spitzer in 1951, the stellarator uses shaped magnetics to confine extremely hot charged gas along a twisting circular path. The complex magnetic fields are designed to optimally and quiescently confine the hot plasma.

CONFINED FLOWING PLASMA

ELECTROMAGNETS

RELIABLE

The stellarator is inherently stable and simple to operate since its performance is controlled only by the fields generated by the external magnets. This removes the need to run a current in the plasma as required by other fusion concepts, which makes them prone to major disruption events that can cause operational failure, damage the device, and degrade fusion performance. Plasma currents also necessitate major equipment, operational, and power requirements to monitor and mitigate these disruptions.

EFFICIENT

For fusion systems driving a plasma current, a DC transformer is used, which must cycle from start, ramp to a peak, and cease.  As a result, the power plant must operate in pulsed mode, resulting in lower power output efficiency,  and increased maintenance and downtime from thermal and mechanical cycling stress. In contrast, a stellarator maintains a persistent fusion plasma that produces energy without cessation.

POWERFUL

Given that no power is required to drive a current or manage disruption events, a stellarator requires the minimum amount of recirculated energy to maintain the fusion process. This provides the stellarator with a high fusion energy gain factor (Q), an important feature for an efficient electricity generating power plant. The higher the Q, the more economically competitive a fusion power plant will be.

The external

twisted magnetic fields keep the fuel particles from

drifting away from where they fuse.

SIMPLE & STABLE
DRIVEN ONLY BY 
EXTERNAL MAGNETIC FIELDS
(NO DISRUPTIONS)
STEADY STATE
CONTINUOUS DUTY OPERATION
HIGH ENERGY GAIN
LOW RECIRCULATING
POWER REQUIRED
 

standout performance

TOWARDS NET POWER 

Tokamaks and stellarators are the two leading fusion power systems that have broken away from the pack in the race to reach NET POWER, a milestone comparable to the first powered flight by the Wright brothers. Alternative concepts being pursed by fusion startups are making progress but remain many orders of magnitude lower in performance.

Since 1951, forty-one experimental stellarators have been built in nine countries with thirteen currently in operation. It is a scientifically mature technology that has made enormous performance strides in recent years to approach parity with tokamaks. In 2018, a world record in stellarator performance was achieved by the W7-X stellarator in Germany, with more gains targeted in 2021 after ongoing upgrades.

Triple Product Fusion Performance

There are three key factors that determine fusion performance: the density and temperature of the ions undergoing fusion and the energy confinement time -  how long the energy is retained in the fusion plasma until it is lost to the surroundings. This is known as the "triple product." Stellarators have demonstrated high levels of performance in each of these categories:

DENSITY
TEMPERATURE

116

4.5

x 10

20

41

million

o

million

o

ions per meter

3

(electron)

(ion)

TIME

250

milliseconds

(energy conf.)

100

seconds

(discharge)

Stellarator performance scales predictably given its simplicity of operation and proven plasma stability at these high ion and electron energy levels. This reduces the risk of unforeseen physics complications that can occur when progressing into the net gain energy regimes needed for commercial operation.

=

LOWER

R&D RISK

PREDICTABLE

SCALING

 

Adapted from T. Pederson et al. (2018) First results from divertor operation in Wendelstein 7-X .

Plasma Physics and Controlled Fusion, Volume 61, Number 1

OPTIMIZATION

A BREAKTHROUGH IN CONFINEMENT

Historically, stellarators have lagged behind tokamak performance due to their prior inability to address two particular types of particle and heat loss mechanisms known as neoclassical transport and turbulent transport. With optimization, this has all changed.

 

Because confinement of the plasma in a stellarator is driven solely by the external magnets, modifying their fields has a major impact on confinement. To give a three-dimensional magnetic field precisely the right shape requires extensive calculations. Advances in theoretical understanding in combination with computer modeling has provided the groundbreaking ability to precisely contour the fields so that the various forces causing the particles to drift, cancel each other out. These powerful 3D-shaping tools have resulted in an entirely new class of stellarator optimized for superior confinement and fusion performance.

Sean Ballinger

MIT-PSFC

In 2007, proof for the benefits of magnetic field shaping were first demonstrated with HSX - the world's first optimized stellarator designed and built by Prof. David Anderson and Prof. Chris Hegna at the University of Wisconsin-Madison. At 2.4 meters in diameter and costing USD $7.5 million, HSX was designed to explore confinement as a function of magnetic geometry. It succeeded in proving superior confinement via strong reductions in neoclassical transport losses. HSX continues to operate and is undergoing a power upgrade to extend its research capabilities.

HSX

3D shaping to minimize neoclassical transport was further demonstrated with W7-X in Germany, a $1.2 billion statement of conviction for optimized stellarators by the German government. The largest experimental stellarator to date (5.5 m major radius), W7-X went online in 2015 with an engineered field configuration that matched computer models to within one part in 100,000. In 2018, it achieved a world record for stellarator fusion performance with the highest triple product to date. With cooling system upgrades currently underway, it is targeted to reach performance levels comparable to that of tokamaks and at run times of 30 minutes, which is unprecedented for any fusion system at these energies.

-X

W

7

The major factor impacting fusion performance in a stellarator is turbulence, which causes particles and heat to leak from the plasma. Given the complexity of the physical process, turbulent transport could not be addressed at the time that HSX and W7-X were designed. Today's analytical and computational capabilities have sufficiently advanced to meet this challenge.

Recent breakthroughs

in optimization now address

the largest energy loss to retire

confinement limitations and

achieve net power in a more

compact stellarator.

 

GAME CHANGERS

KEY ENABLING TECHNOLOGIES

In addition to providing reliable and abundant power when and where it is needed, a stellarator power plant must be cost-competitive to build and operate. This is now possible due to three transformational capabilities being applied by Type One in collaboration with our academic, national lab, and corporate partners:

OPTIMIZATION

1

Advancements in analytical theory, supercomputing and sophisticated codes uncover previously hidden magnetic field configurations that provide optimal confinement of the plasma for the largest and most efficient power generation.

2

3D PRINTING

 With Additive Manufacturing (AM), large, complex-shaped, dimensionally-accurate, and production-scalable systems dramatically reduce lead times, material cost and waste compared to conventional methods such as forging and casting. Nanoparticle technology further expands the AM design envelope for advanced material performance. 

3

HTS MAGNETS

 New high-temperature superconducting

(HTS) magnets carry over 10 times the electricity of comparable copper wire

and require less cooling power than conventional low-temp magnets. Operating at higher field strengths made possible with HTS offers better fusion performance with reductions in size and associated costs.

ADDITIVE MANUFACTURE

OF ALL STRUCTURAL

COMPONENTS MASS PRODUCED AT SUBSTANTIAL COST AND TIME SAVINGS

HIGH FIELD

HTS MAGNETS

BOOST PERFORMANCE AND REDUCE VOLUME

AND WEIGHT

OPTIMIZED CONFINEMENT

FROM SUPERCOMPUTER-SHAPED

3D MAGNETIC FIELDS YIELD

NET POWER PERFORMANCE

 

starGAZER

CONFINEMENT FOR NET POWER 

With HSX, a quasi-helical stellarator (QHS), there was successful agreement of theory and design to the real-world experiment. We know that QH stellarators can be built and with key physics benefits of the quasi-helical configuration demonstrated. Many of the physics properties of QHS are equivalent to the beneficial features of the tokamak, but without the plasma current instabilities and disruptions.
 

STARGAZER is a new stellarator currently under design by Type One and the HSX Plasma Laboratory and Center for Plasma Theory and Computation at the University of Wisconsin in Madison. STARGAZER incorporates advanced optimization to dramatically reduce both neoclassical and turbulent transport - another world first. Optimizing confinement as a function of magnetic geometry addresses performance at the foundation level to avoid design pathways that would result in a much larger, less versatile, and more expensive power unit.

STARGAZER will provide the know-how and capability to build the follow-on stellarator KITTYHAWK to reach net power levels of performance. In preparation, STARGAZER will incorporate additive manufactured components such as the magnet assemblies, magnet support shell and vacuum vessel to reduce build time and cost. In parallel, Type One is actively developing superconducting non-planar magnets in collaboration with MIT, which is funded by a grant from the US Department of Energy ARPA-E BETHE fusion program:

High

temperature superconducting stellarator magnet

coils with additive

manufactured

assemblies

 

Quasi-helical

symmetric

magnetic field

configuration optimized

to control losses from neoclassical and

turbulent

transport.

ARPA-E Awardee White_ Transparent Backgr

EXECUTION

OPTIMIZED FOR COMMERCIALIZATION

Type One leverages long-standing relationships with interdisciplinary departments within the University of Wisconsin-Madison as well as world-class partner academic labs, national labs and companies having the proven expertise, capabilities, and specialization to rapidly execute on the key areas of innovation. This multi-center program is directed and managed by Type One with a focus on speed and capital efficiency. Our main collaborations include:

STELLARATOR PHYSICS & ENGINEERING

   UW HSX Stellarator Lab (Dept. of Electrical and Computer Engineering)

   UW Center for Plasma Theory & Computation (Dept. of Engineering Physics)

These departments are responsible for the design, build and operation of HSX, and have received continuous funding for stellarator research from the US Department of Energy Office of Fusion Energy Sciences since 1974.

 

ADDITIVE MANUFACTURING

  UW Metals Design & Manufacturing Laboratory  (Dept. of Mechanical Engineering)

MDML specializes in the design of novel alloys, processing strategies, and smart manufacturing to achieve predictable, consistent and reliable metal AM technology. MDML manages the Type One AM consortium, which includes the Missouri S&T Center for Aerospace Manufacturing Technologies, DMG MORI, Meld Manufacturing, Protolabs, and the Oak Ridge National Laboratory Manufacturing Demonstration Facility.

 

FABRICATION

  UW Physical Sciences Lab

A 40-year-old major design and fabrication center that has worked on more than 6000 projects including many of the large fusion experimental devices at UW-Madison. PSL employs state of the art machinery, electronics shops, and a highly trained staff in electrical engineering, mechanical engineering and physics. PSL was a major contributor to the design and build of the successful HSX stellarator.

POWER PLANT DESIGN

  UW Fusion Technology Institute (Dept. of Engineering Physics)

Since the 1970, the UW FTI has been designing more than 70 fusion power plants and experimental facilities, covering numerous magnetic and inertial confinement concepts: tokamaks, stellarators, spherical tori, tandem mirrors, and laser/heavy-ion/Z-pinch driven inertial fusion. Its neutronics center of excellence is a nationwide leader in the nuclear field, addressing neutronics, shielding, activation, and environmental management factors for conceptual fusion power plants optimized for reliability, availability, maintainability, and inspectability (RAMI) for all components.

HTS MAGNETS

  MIT Plasma Science & Fusion Center

MIT-PSFC are the world leaders in developing HTS cable and coil for high field electromagnets used in fusion applications.

 

METHODOLOGY

For successful commercialization of a fusion power plant, many interrelated factors have to be taken into account simultaneously, all of which are predicated on delivering the most market responsive solution. Guided by regular feedback from the utility customer and other stakeholders, Type One takes an interoperable approach to R&D with multi-functional teams working to parallel to advance theory, applied science, engineering, and manufacturing. This breaks down silos to cross-pollinate efforts for a shortened time-to-market and an optimized end product.

 

TECH-TO-MARKET

PATH TO A PILOT POWER PLANT

The commercialization campaign has four phases with technical milestones tied to three iterative stellarator builds demonstrating progressive gains in performance, simplification, and cost through the parallel application of 3D magnetic field optimization, industrial additive manufacturing, and non-planar high temperature superconducting electromagnets: 

PHASE

0

PHASE

1

PHASE

2

PHASE

3

Phase 0 is partially underway with the physics and conceptual design of STARGAZER, which is currently supported by a UW2020 grant from the Wisconsin Alumni Research Foundation. Other initiatives under Phase 0 include the sub-scale build of a demonstration HTS stellarator magnet in collaboration with MIT and funded by the US Dept. of Energy Advanced Research Projects Agency-Energy (ARPA-E) under the BETHE program. AM development efforts include a magnet support shell, vacuum vessel and divertor components using materials designed for a fusion environment and scalable for rapid, large-scale, and low-cost mass production to hit the following targets:

REDUCE

PRODUCTION

COST

>65%

REDUCE

PRODUCTION

WASTE

>75%

PART

CONSOLIDATION

4:1

Phase 1 will see the rapid and low-cost AM build of STARGAZER, a lean two-meter, 2.5 tesla stellarator design devoted solely to demonstrating the advanced confinement physics needed for net power using the advanced 3D field-optimized configuration.  By focusing on this critical milestone, the majority of R&D risk can be retired early in the campaign and for the least amount of capital.

Phase 2 executes on the build of KITTYHAWK, which incorporates extensive AM components, HTS magnets, and an integrated shield/heat exchange blanket using supercritical water, tungsten carbide and F82H steel. This serves as the most compact and durable radial build for use with catalyzed deuterium-deuterium fuel.

 

The keystone deliverable of KITTYHAWK will be the demonstration of 2X net power generation. This will be a a "triple net" measure that factors in total "wall plug" input energy used by the power system, the losses from converting the fusion energy into electricity, as well as recirculating energy fed back into the system to maintain the process.

2X

NET GAIN

TWICE THE ENERGY

NEEDED TO ACHIEVE

BREAKEVEN

Phase 3 has the third stellarator SPITZER-1, will target larger multiples of net power to support commercial levels of electricity generation. This will be paired with an advanced  and well established steam cycle technology that employs supercritical water (s-H20) as the working fluid to drive a high-heat turbine for a power conversion efficiency  target of 50%.

 

While the deuterium fuel is already available in large quantities from major industrial gas suppliers, Phase 3 will demonstrate an on-site, end-to-end water-to-electricity solution, using a Liquid Phase Catalytic Exchange (LPCE) column to highly concentrate liquid deuterium from water and extract it as a gas using PEM-based electrolysis. In regions with multiple Type One power plant installations, the use of a centralized deuterium fuel production facility can be deployed to service in the range of ten power plants.

 

While the stellarator power unit is best suited to provide a fixed amount of baseload energy, instant peak load following will be demonstrated in Phase 3 using commercially available, grid-scale PEM fuel cells to generate electricity from the recombination of hydrogen and oxygen to make water, which are previously separated and stored during periods of excess energy or as a byproduct of the deuterium extraction process. The hydrogen can also be transported as a high pressure gas for use as zero-carbon transport fuel.

GREATER

THAN TEN

TIMES NET

FUSION

POWER

SUPERCRITICAL

WATER 

STEAM CYCLE 

ENERGY

CONVERSION

HYDROGEN

FUEL CELL

ENERGY

STORAGE AND

PEAKER

WEIGHT

REDUCTION

>30%

TOOLING

REDUCTION

>80%

REDUCE

PRODUCTION

TIME

>50%

 

ECONOMICAL POWER PLANT

DESIGNING FOR RAPID & WIDESPREAD ADOPTION

DEUTERIUM FUEL

WATER EXTRACTION

(ON-SITE OPTIONAL)

FUSION BYPRODUCTS

PROCESSING

STELLARATOR UNIT(S)

& HEAT

EXCHANGER

SUPERCRITICAL

H20 STEAM

CYCLE

HYDROGEN ENERGY

STORAGE & PEAKING

POWER (OPTIONAL)

ELECTRICAL SWITCH

YARD

To disrupt carbon-based fuels, a fusion power plant must meet a combination of low capital and operating costs, rapid construction time, high operational reliability, and ease of maintenance . The combination of additive manufacturing, high field operation, and high efficiency supercritical water thermal cycle offers the best path for a stellarator plant to achieve these objectives. The following non-subsidized costs are targeted for 10th-of-a-kind power units and nth-of-a-kind balance of plant:

TARGETS

<$5

per watt

OVERNIGHT CAPITAL COST

30

months

CONSTRUCTION TIME

>10

years

FIRST WALL LIFETIME

<¢5

kw-hr

NON-SUBSIDIZED COST OF ELECTRICITY

0.8-1.2

GWe

GENERATION PER POWER UNIT

40

full power years

PLANT LIFETIME

>85

percent

CAPACITY FACTOR

>45

percent

ENERGY CONVERSION

 

fuel CYCLE

TARGETING SIMPLICITY & LONGEVITY

The force of gravity at the core of the Sun creates tremendous density and unending confinement time that allows hydrogen to fuse at only 15 million degrees. In a fusion device, such conditions are not attainable, necessitating temperatures in the range of 100 million degrees.  In addition, hydrogen is 24 orders of magnitude less reactive to fuse than its neutron-rich isotopes deuterium and tritium - the most viable fusion fuels for use here on Earth.

 

DEUTERIUM-TRITIUM FUEL CYCLE

The easiest fuel combination to fuse is deuterium with tritium (D-T) to create helium and a highly energetic 14 MeV neutron. Tritium does not exist in nature has to be bred in the "blanket" that surrounds the plasma using lithium and the neutrons generated during the fusion process. With 80% of the energy carried by the neutrons, part of the blanket includes a working fluid that slows down the neutrons to thermal energies, and then transfers that heat to a power conversion cycle. Given the high energies of these neutrons and the additional layer required for tritium breeding, blankets used for the D-T fuel cycle have to be over one meter thick. Additionally, structural materials need to operate at very high temperatures of over 550 degrees Celcius  and withstand damage from the high energy neutrons, necessitating more frequent replacement of plasma facing components.

DEUTERIUM

TRITIUM

HELIUM

HIGH ENERGY

NEUTRON

20%

OF ENERGY

IN CHARGED

PARTICLES

80%

OF ENERGY

IN NEUTRAL

PARTICLES

CATALYZED DEUTERIUM-DEUTERIUM FUEL CYCLE

The demonstrated high density, high beta, and large power gain factor of stellarators paired with high field, facilitates the use of deuterium as the only fuel. As a result, Type One has targeted use of the advanced fuel cycle known as catalyzed deuterium (Cat D-D). It is catalyzed since the tritium and helium-3 produced from the primary D-D reactions are subsequently fused with deuterium in secondary reactions to produce more energy and helium. Unlike D-T, the majority of the fusion energy is not carried by the energetic neutrons, but in the charged particles that have undergone fusion:

Cat D-D Charged Particle Chain

DEUTERIUM

FUSES

TWO FUSION

PATHS TAKEN

PRODUCED TRITIUM EXTRACTED OR FUSED WITH

ADDITIONAL DEUTERIUM TO BECOME HELIUM

50%

50%

HELIUM 3

TRITIUM

DEUTERIUM

DEUTERIUM

HELIUM

HELIUM

65%

OF ENERGY

IN CHARGED

PARTICLES

35%

OF ENERGY

IN NEUTRAL

PARTICLES

 

The use of Cat D-D requires five times greater confinement performance than the D-T cycle, but it removes numerous cost, complexity, and engineering challenges associated with the D-T system, such as readily available fuel and no need for a tritium breeding blanket or tritium recovery fueling system. Because a much lower neutron flux is generated, a number of benefits are realized:

             ●  the use of established and cost effective GEN-1 materials for shielding

             ●  greatly extended service life of components (from years to decades)

             ●  improved ease of maintenance

             ●  increased operational uptime

             ●  thinner power core for more effective application of the external magnetic fields

             ●  reduced neutron activation of materials suitable for recycling and clearance

             ●  no dependency on exotic or limited mined resources

             ●  easy to license by regulatory agencies

TRITIUM SUPPRESSION

Fuel cycle R&D will asses the use of ion cyclotron power to pump out a portion of the tritium before it fuses to further reduce the number of 14 MeV neutrons and increase the lifetime of components.  The tritium is stored and naturally converts into helium-3 (half-life of 12.3 years), which a fuel that produces hydrogen and helium when fused with deuterium and no neutrons.

POLARIZED DEUTERIUM  FUEL

Additional enhancements will be explored using polarized fusion fuel for which there has been over thirty years of investigation. Aligning the spin of the deuterium fuel is expected to increase the fusion reaction rate, boost the percentage of charged particles to neutrons, and enable control over the direction of fused particles for improved energy production and heat management.

deployment

FOR RAPID MARKET CAPTURE

REVENUE STRATEGY

Revenues will be generated through the mass production and sale of stellarator power units produced from Type One gigafactories fabricating a high fraction of pre-assembled components to expedite construction for a 2-year on-site install target. To participate in revenues from the sale of electricity (~$1.3 trillion per year addressable market), Power Purchase Agreements (PPA) will be secured with utilities and partner deployment firms specializing in Engineering, Procurement, Construction (EPC), as well as Operating and Maintenance (O&M).

 

MARKET SIZE

Approximately 300 quadrillion BTUs ("quads") of new energy are required by 2050 (US IEA) to meet demand, raising total global energy consumption to 911 quads. This translates to roughly $50 trillion in cumulative investments in generation over the same period. Carbon-based energy is projected to lose 11% of market share during this period but will still comprise a majority share of the energy mix at 69%. This amounts to 125 quads in new carbon-based energy generating 3.6 billion tonnes of additional CO2 per year in 2050.

Energy Mix

2020

32%

26%

22%

15%

2050

fff.png

22%

20%

27%

4%

27%

5%

SEGMENTATION

Type One will initially focus on intercepting new natural gas, coal, and diesel generating capacity in the 1 GWe and greater range and replacement of decommissioned plants for heat and electricity in the emerging markets of OECD Asia. This market represents:

 the largest and fastest-growing region in the world for energy consumption (a projected 

   70% increase from 2018 to 2050)

 new baseload power plants averaging 820 MWe (natural gas) to 1100 MWe (nuclear)

 high fractions of fossil fuels in their energy mix (e.g. China and India draw more than 70%

   of their electricity from coal - US EIA).

 

Type One will spearhead fusion industry-led initiatives for regions to adopt regulations and licensing appropriate for fusion (already underway in the US), provide government loan guarantees on construction, and offer fusion subsidies to utilities.

DISPLACE 

CARBON-BASED

NEW

GENERATION

IN OECD

ASIA

FOR >800MWe

BASELOAD

WITH HIGH % OF

INDUSTRIAL LOAD

REGIONAL

FACTORS

FUSION

SUBSIDIES

CLEAN POWER

INVESTMENTS

CARBON

TAX

REGULATORY

FRAMEWORK

GOV LOAN

GUARANTEES

MANDATED COAL RETIREMENT

PENETRATION

Given the disruptive nature of Type One power units at targeted plant economics, an initial installed base of 15 gigawatts in nameplate generating capacity is estimated in the first five years from an operational pilot plant in the second half of the 2030s. Growth is driven by capturing 56% of new energy consumption over the period from 2050, yielding a 15% market share. Other anticipated fusion participants are projected to secure an 8% global market share by servicing demand primarily in the less than 500MWe compact power unit segment. Combined, this results in fusion displacing 25% of the market share for carbon-based energy by 2050. Retirement of carbon-based capacity drives continued growth beyond 60% to establish fusion as the primary source of power on the planet.

Energy Mix in 2050 with Fusion

ccc.png

21%

8%

15%

16%

11%

26%

3%

Making up more than half of global energy consumption, the biggest challenge is the decarbonization of industry, which include energy intensive applications such as making steel and cement, desalinization, and upcoming atmospheric decarbonization deployments.

PROCESS HEAT

High heat for cement, steel, glass, chemicals, and other uses is 32% of global energy use. 

DESALINIZATION

By 2050, over half of the global population will live in water stressed areas.

ATMOSPHERIC

DECARBONIZATION

Direct air capture requires a whopping

8.8 gigajoules of energy per ton of CO2.

HELIUM & HYDROGEN

Currently, helium is obtained from natural underground reserves that are dwindling.

MEDICAL ISOTOPE

PRODUCTION

Long half-life isotopes are produced by only 8 nuclear reactors and flown worldwide.

MARINE PROPULSION

Fuel costs represent as much as 60% of total freighter operating costs. 

TEAM

PROVEN EXECUTION

Prof. David Anderson
STELLARATOR ENGINEERING PHYSICS

David received his PhD in engineering from the University of Wisconsin in 1984 and has been a world leader in stellarator R&D for over thirty years. Within the UW-Madison College of Engineering, he established the HSX Plasma Laboratory and successfully designed, built and operated the world's first optimized stellarator, which included the in-house manufacture of the complicated magnet coils to precision tolerances. David led the engineering and experimental campaign that proved the impact of optimized stellarators to dramatically improve confinement.

 

David's career in plasma physics and controlled fusion includes various publications, awards and lectures for numerous graduate level courses in plasma physics and electrodynamics.

Prof. Chris Hegna
STELLARATOR 3D FIELD OPTIMIZATION

Chris is the director of the University of Wisconsin Center for Plasma Theory and Computation and is involved in the research activities of three magnetic confinement experiments, the HSX Plasma Laboratory, Pegasus Toroidal Experiment (PTE)and the Madison Symmetric Torus (MST). His primary field is theoretical plasma physics with an emphasis on plasma confinement using magnetic fields. Chris pioneered the use of 3D magnetic field shaping for the physics design of HSX, which demonstrated the confinement enhancement predicted by theory.

 

Chris is heavily involved in the U.S. fusion science program by serving on a number of workshop and conference organization committees, review panels and program advisory committees. In 2014, he received the Excellence in Plasma Physics Research Award by the American Physical Society.

Prof. Laila El-Guebaly
STELLARATOR POWER PLANT ENGINEERING DESIGN

Laila is a Distinguished Research Professor Emerita of the University of Wisconsin -Madison, and a former leader of the UW Neutronics Center of Excellence - the recognized nationwide center in neutronics, shielding, and activation. As a renowned world expert in fusion power core design, Laila has been a key contributor to numerous high-profile fusion conceptual design projects, including the ARIES and FNSF studies. Laila leads international workshops on technical matters of interest for developing appropriate fusion regulations and the recycling and clearing of activated materials.

Dr John Canik
STELLARATOR PLASMA PHYSICS (ACTIVE ADVISOR)

John received his PhD in Plasma Physics from the University of Wisconsin-Madison and led numerous stellarator studies at the HSX Plasma Laboratory. In 2007, John went to work at Oak Ridge National Laboratory (ORNL) under a prestigious Wigner Fellowship. John then headed the ORNL Plasma Physics Theory Group and served as the interim Director of the ORNL Fusion Energy Division from 2019 to 2020.

Asst. Prof. Lianyi Chen
ADDITIVE MANUFACTURING

Asst. Prof. Lianyi Chen holds a Ph.D. in Materials Science and Engineering from Zhejiang University and joint affiliations with the Metals Design and Manufacturing Laboratory at the University of Wisconsin-Madison, the Missouri S&T Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, and Center for Aerospace & Manufacturing Technologies.

 

Lianyi's expertise is at the intersection of AM manufacturing, materials science, and nanotechnology. His specializations include new materials, metallurgy, and processes for metal additive manufacturing, metals nanoprocessing, smart manufacturing using advanced sensing and control technologies, metal matrix nanocomposites, lightweight and refractory metals, metallic glasses and in-situ microstructure characterization.

Lianyi has developed a customized laser powder bed AM system and laser blown powder DED system for in-situ high-speed x-ray imaging/diffraction research, as well as led multiple AM projects funded by NSF, DOE’s KCNSC, and Boeing. He has published over 50 papers in peer-reviewed journals, including 1 in Nature, 1 in Nature Communications, 2 in Physical Review Letters, and 4 in Acta Materialia. He is also an inventor of 6 patents.

Dr. Don Spong
STELLARATOR PLASMA AND COMPUTATIONAL PHYSICS (ACTIVE ADVISOR)

Don is a Distinguished R&D staff member in the Theory and Modeling group within the Fusion Energy Division at Oak Ridge National Laboratory. He received his PhD in Nuclear Engineering - Plasma Physics from the University of Michigan. Don’s interests are in energetic particle confinement/instabilities, runaway electron physics, and neoclassical transport in 3D systems. He helped develop the stellarator optimization and analysis methods used for the QPS/NCSX compact stellarator projects. He has served two appointments as a visiting professor at the institute (NIFS) which operates Japan’s largest stellarator project (LHD). He currently serves as the topical group leader for the energetic particle physics ITPA group that advises ITER.

Randall Volberg
COMMERCIALIZATION

For over 25 years, Randall has been a serial startup entrepreneur, business development director, and R&D project manager across numerous technology sectors from concept to acquisition. A fusion energy enthusiast from the age of eight, Randall has been contributing to the growth of the fusion R&D community full time since 2014, serving in various leadership capacities that focus on broadening the fusion ecosystem of research, private finance, industry collaboration,  government support, and NGO advocacy. 

 

Randall is a co-founder and planning group member of the Fusion Industry Association, the representative body of the international fusion startup community, and an Adjunct Fellow of the American Security Project and a Project Management Professional with certification training from Caltech.

 

contributors

FROM PHYSICS TO GRID

ARPA-E Awardee White_ Transparent Backgr
 

CONTACT

TYPE ONE

ENERGY

MAILING ADDRESS
345 W Washington Avenue 
3rd Floor
Madison, Wisconsin
USA 53703

EMAIL & PHONE

admin@typeoneenergy.com
Tel:  1 608 352 6939

For any general inquiries, please fill in the following contact form:

 

© 2020 Type One Energy Group

  • LinkedIn - White Circle