timely & PRACTICAL

FUSION POWER

DISRUPTIVELY PRICED

FOR GLOBAL ADOPTION

A massive transition is underway as major populations in emerging economies access modern infrastructure. This is a time of great challenge and opportunity as unprecedented demand is placed on healthcare, education, water, food, transportation and energy. At their foundation is power, and we need to transform how we produce it in order to protect the planet while advancing a more abundant and equitable future for all.

Fusion energy is the clean power at the center of stars. Mastered here on earth, its unique advantages will rapidly disrupt carbon-based fuels to become the primary form of baseload power on the planet.

The stellarator is a fusion power system that uses magnetic fields to confine ionized gas to fusion conditions using fuel obtained from water. Its inherently practical features make it highly attractive to utilities for 24/7 baseload operation that can be deployed almost anywhere. Under development by various nations, the stellarator has been making tremendous strides in recent years towards the goal of generating surplus power, the Kittyhawk moment for fusion.

Type One Energy is founded by experts and technology from the University of Wisconsin, a world leader in stellarator R&D, and MELTIO, a major innovator in advanced manufacturing, with the mission to provide clean, affordable fusion power to every city across the globe. In collaboration with its public and private partners, Type One bridges lab-to-market by uniting the outstanding operation of the stellarator with breakthroughs in theory, additive manufacturing, and high temperature superconducting magnets for an economical fusion power plant deployed worldwide in the shortest amount of time.

FUSION

ENERGY

POWER TO

TRANSFORM THE ENERGY LANDSCAPE

FUEL FROM WATER

 

Deuterium (H2 or D), a natural hydrogen isotope contained in water, is fused to produce tremendous energy that is four million times more powerful than chemical reactions, such as burning fossil fuels, and four times more than nuclear fission. Costing less than $1 per gram, deuterium is extracted using a simple, established, and environmentally benign industrial process. With only half a gram needed to power an average home for a year, deuterium fuel amounts to much less than one percent the cost of electricity with enough in seawater alone to power the globe for millions of years. 

NO HARMFUL IMPACT

 

The deuterium fuel used in a fusion power  system produces inert helium, which is a valuable commodity. No emissions contributing to climate change or pollution are created. There is no carbon footprint from mining, refining, or major transport, as is common with other forms of fuel. The extraction of deuterium has no effect on the water and is restored to the source.

EVERY
DROP
OF WATER
IS 0.03%
DEUTERIUM
BY MASS
NO MELTDOWNS OR RADIOACTIVE FUEL WASTE

No mechanism for a runaway reaction exists, and any form of meltdown is physically impossible. In the event of an operational failure, the fusion process instantly ceases. There is no fissile material or spent radioactive fuel to store. Neutron activated materials produced by fusion are recycled and cleared for commercial reuse.

SECURE & STEADY

 

An unvarying and continuous supply of  electricity is generated 24/7 by a stellarator power plant. Since the fuel is ubiquitous, near limitless, and very low cost, resource constraints arising from geopolitics, supply issues, and commodity prices, become a thing of the past.

DISPATCHABLE

 

Hydrogen is cleanly produced from the deuterium extraction process and is perfectly suited as an energy storage medium for instant load following using existing industrial-scale equipment.

DEPLOYABLE

 

Fusion power systems can be sized to support localized grids with siting suitable for urban areas right where the energy is used, avoiding the costs of long distance transmission.

 

STELLARATOR

CLEAN BASELOAD POWER

FOR MODERN NATION BUILDING

The stellarator is a innovative marriage of elegant physics, engineering artistry, and practical utility.

Invented in the United States by Dr. Lyman Spitzer in 1951, the stellarator uses shaped magnetics to confine extremely hot charged gas along a twisting circular path. The complex magnetic fields are designed to optimally and quiescently confine the hot plasma.

CONFINED FLOWING PLASMA

ELECTROMAGNETS

RELIABLE

The stellarator is inherently stable and simple to operate since its performance is controlled only by the fields generated by the external magnets. This removes the need to run a current in the plasma as required by other fusion concepts, which makes them prone to major disruption events that can cause operational failure, damage the device, and degrade fusion performance. Plasma currents also necessitate major equipment, operational, and power requirements to monitor and mitigate these disruptions.

EFFICIENT

For fusion systems driving a plasma current, a DC transformer is used, which must cycle from start, ramp to a peak, and cease.  As a result, the power plant must operate in pulsed mode, resulting in lower power output efficiency,  and increased maintenance and downtime from thermal and mechanical cycling stress. In contrast, a stellarator maintains a persistent fusion plasma that produces energy without cessation.

POWERFUL

Given that no power is required to drive a current or manage disruption events, a stellarator requires the minimum amount of recirculated energy to maintain the fusion process. This provides the stellarator with a high fusion energy gain factor (Q), an important feature for an efficient electricity generating power plant. The higher the Q, the more economically competitive a fusion power plant will be. Stellarators have the potential to reach infinite Q whereby the energy produced from the fusion plasma becomes self-sustaining requiring no external power to maintain it. This is referred to as "ignition."

The external

twisted magnetic fields keep the fuel particles from

drifting away from where they fuse.

SIMPLE & STABLE
DRIVEN ONLY BY 
EXTERNAL MAGNETIC FIELDS
(NO DISRUPTIONS)
STEADY STATE
CONTINUOUS OPERATION
(NO PULSING)
HIGH ENERGY GAIN
LOW RECIRCULATING
POWER REQUIRED
 

standout performance

A SHORTER PATH TO NET POWER 

Tokamaks and stellarators are the two leading fusion power systems that have broken away from the pack in the race to reach NET POWER, a milestone comparable to the first powered flight by the Wright brothers. Alternative concepts being pursed by fusion startups are making progress but remain many orders of magnitude lower in performance.

Since 1951, forty-one experimental stellarators have been built in nine countries with thirteen currently in operation. It is a scientifically mature technology that has made enormous performance strides in recent years to approach parity with tokamaks. In 2018, a world record in stellarator performance was achieved by the W7-X stellarator in Germany, with more gains targeted in 2021 after ongoing upgrades.

Triple Product Fusion Performance

There are three key factors that determine fusion performance: the density and temperature of the ions undergoing fusion and the energy confinement time -  how long the energy is retained in the fusion plasma until it is lost to the surroundings. This is known as the "triple product." Stellarators have demonstrated high levels of performance in each of these categories:

DENSITY
TEMPERATURE
TIME

116

4.5

x 10

20

41

250

100

ions per meter

3

million

o

(electron)

million

o

(ion)

milliseconds

(energy conf.)

seconds

(discharge)

Stellarator performance scales predictably given its simplicity of operation and proven plasma stability at these high ion and electron energy levels. This reduces the risk of unforeseen physics complications that can occur when progressing into the net gain energy regimes needed for commercial operation.

=

LOWER

R&D RISK

PREDICTABLE

SCALING

 

Adapted from T. Pederson et al. (2018) First results from divertor operation in Wendelstein 7-X .

Plasma Physics and Controlled Fusion, Volume 61, Number 1

OPTIMIZATION

A BREAKTHROUGH IN CONFINEMENT

Unlike tokamaks that operate in pulses with susceptibility to disruptions, stellarators can work continuously free of disruptions. However, conventional stellarators have lagged behind tokamak performance because they do not posses the simple circular symmetry of the tokamak, which was better at confining the plasma. This has all changed with the groundbreaking discovery in the 1980s by Jürgen Nührenberg and Allen Boozer of a hidden symmetry in stellarators realized by precisely contouring their magnetic fields so that the various forces causing the particles to drift, cancel each other out. This "quasi symmetry" was the dawn of the modern "optimized" stellarator with its characteristic organic shape.

Because confinement of the plasma in a stellarator is driven solely by the external magnets, modifying their fields has a major impact on performance. To tailor a three-dimensional magnetic field with precisely the right shape to achieve quasi-symmetry requires extensive calculations. Advances in computer modeling code and high performance computing has provided this ability. These powerful tools have resulted in an entirely new class of stellarator optimized for superior confinement and fusion performance.

In 2007, proof for the benefits of magnetic field shaping were first demonstrated with HSX - the world's first optimized stellarator designed and built by Type One co-founders Prof. David Anderson and Prof. Chris Hegna at the University of Wisconsin-Madison. HSX measured 2.4 meters in diameter and cost USD $7.5 million to build. Due to its optimized configuration, HSX proved superior confinement via strong reductions in neoclassical transport, a previously untamed loss mechanism that causes particles and heat to leak from the plasma. HSX continues to operate and is undergoing a power upgrade to extend its research capabilities.

HSX

3D shaping to minimize neoclassical transport was further demonstrated with W7-X in Germany, a $1.2 billion statement of conviction for optimized stellarators by the German government. The largest experimental stellarator to date (5.5 m major radius), W7-X went online in 2015 with an engineered field configuration that matched computer models to within one part in 100,000. In 2018, it achieved a world record for stellarator fusion performance with the highest triple product to date. With cooling system upgrades currently underway, it is targeted in 2021-2022 to reach performance levels comparable to that of tokamaks and at run times of 30 minutes. This is an unprecedented duration for any fusion system at these energies.

-X

W

7

OPTIMIZING FOR TURBULENCE

While mitigating neoclassical transport was a major leap forward, the largest loss channel limiting fusion performance in a stellarator is turbulence, which determines the energy confinement time. With turbulence, small eddies cause hot particles from the plasma to escape, reducing the thermal insulation that maintains the rate of fusion at its core.

Given the complexity of the physical process, the analytical tools to address turbulence did not exist at the time that HSX and W7-X were designed. Newly developed and highly sophisticated three-dimensional, gyrokinetic turbulence codes for simulating stellarator physics, combined with high performance computing, have sufficiently advanced to meet this challenge. The resulting stellarator designs generate a new class of high performance plasmas, which will realized in the next Type One stellarator: STARBLAZER. 

Recent breakthroughs in 

  stellarator design code

     enables plasma   

      turbulence to be

      strongly suppressed.  

 

       Turbulence is the largest        source of energy loss               and the last barrier to

 achieving net power. 

 

GAME CHANGERS

KEY ENABLING TECHNOLOGIES

In addition to providing reliable and abundant power when and where it is needed, a stellarator power plant must be cost-competitive to build and operate. This is now possible due to three transformational capabilities being applied by Type One in collaboration with our academic, national lab, and corporate partners:

OPTIMIZATION

1

Advancements in analytical theory, supercomputing and sophisticated codes uncover previously hidden magnetic field configurations that provide optimal confinement of the plasma for the largest and most efficient power generation.

2

ADVANCED MFG 

Generative design with hybrid additive manufacturing, advanced materials, and robotic automation enables the large scale build of highly optimized, complex-shaped, dimensionally-accurate, and defect-free stellarator components. This yields superior performance with fewer parts, faster build times, and lower costs compared to conventional methods. Additional technologies for realizing more compact and lower maintenance fusion power plants include AI-driven in-situ qualification, embedded sensors, and laser-sintered ceramic and metal matrix composites with blended nanoparticles for functional gradients.

3

HTS MAGNETS

 New high-temperature superconducting

(HTS) magnets can carry over 200 times the current carrying capacity of copper wires of the same dimensions and require less cooling power than conventional low temperature magnets. Operating at higher field strengths made possible with HTS offers better fusion performance with reductions in volume and associated costs.

ADDITIVE MANUFACTURE

OF ALL STRUCTURAL

COMPONENTS MASS PRODUCED AT SUBSTANTIAL COST AND TIME SAVINGS

HIGH FIELD

HTS MAGNETS

BOOST PERFORMANCE AND PERMIT MORE CONSERVATIVE PLASMA PHYSICS REQUIREMENTS

OPTIMIZED CONFINEMENT

FROM SUPERCOMPUTER-SHAPED

3D MAGNETIC FIELDS YIELD

NET POWER PERFORMANCE

 

starblazer

CONFINEMENT FOR NET POWER 

TM

With HSX, a quasi-helical stellarator (QHS), there was successful agreement of theory and design to the real-world experiment. We know that QH stellarators can be built and with key physics benefits of the quasi-helical configuration demonstrated. Many of the physics properties of QHS are equivalent to the beneficial features of the tokamak, but without the plasma current instabilities and disruptions.
 

STARBLAZER is a new stellarator currently under design by Type One and the HSX Plasma Laboratory and Center for Plasma Theory and Computation at the University of Wisconsin in Madison. STARBLAZER incorporates advanced optimization to dramatically reduce both neoclassical and turbulent transport - another world first. Optimizing confinement as a function of magnetic geometry addresses performance at the foundation level to avoid design pathways that would result in a much larger, less versatile, and more expensive power unit.

To extend stellarator fusion performance into the net power regime, STARBLAZER will determine the optimized 3D-field configuration to be used for building the net power stellarator KITTYHAWK, followed by the commercial demonstrator SPITZER-1, which  will target continuous operation and a self-sustaining fusion plasma:

Adapted from Phys. Plasmas 26, 082504 (2019); https://doi.org/10.1063/1.5098761

To reduce build time and cost, STARBLAZER will incorporate generative-designed, additive manufactured components including the magnet assemblies, magnet support shell and vacuum vessel:

In parallel, Type One is actively developing the world's first HTS stellarator magnet under a research collaboration with the Plasma Science & Fusion Center at the Massachusetts Institute of Technology, and the University of Wisconsin-Madison. Type One has been awarded a grant from the US Department of Energy ARPA-E BETHE fusion program to fund this project:

High

temperature superconducting stellarator magnet

with additive

manufactured

assemblies

funded by

in collaboration with

 

Quasi-helical

symmetric

magnetic field

configuration optimized

to control losses from neoclassical and

turbulent

transport.

ARPA-E Awardee White_ Transparent Backgr

TM

Type One is building the machine that builds the machine. Under an exclusive strategic technology merger with MELTIO Systems, Type One is developing from the ground up NEBULA - a proprietary large format, high precision additive manufacturing platform made for the economical mass production of major fusion components. NEBULA is located at the Type One STARYARDS facility in Las Vegas, Nevada. 

MAXIMUM

DIMENSIONAL

ACCURACY

+/-0.25 mm

MATERIAL

DENSITY

>99%

PRODUCTION

COST

SAVINGS

>10X

OPEN AIR

MAX BUILD

ENVELOPE

 200 m 

REDUCE

PRODUCTION

TIME

STRESS

INDUCED

CRACKS

0%

REDUCE

PRODUCTION 

WASTE

>75%

TOOLING

REDUCTION

>80%

WEIGHT

SAVINGS

>30%

INCREASED

PART

CONSOLIDATION

10:1 

3 

>10X

NEBULA

AUTONOMOUS FUSION FACTORY

 

EXECUTION

OPTIMIZED FOR COMMERCIALIZATION

Type One leverages long-standing relationships with interdisciplinary departments within the University of Wisconsin-Madison as well as world-class partner academic labs, national labs and companies having the proven expertise, capabilities, and specialization to rapidly execute on the key areas of innovation. This multi-center program is directed and managed by Type One with a focus on speed and capital efficiency. Our main collaborations include:

STELLARATOR PHYSICS & ENGINEERING

   UW HSX Stellarator Lab (Dept. of Electrical and Computer Engineering)

   UW Center for Plasma Theory & Computation (Dept. of Engineering Physics)

These departments are responsible for the design, build and operation of HSX, and have received continuous funding for stellarator research from the US Department of Energy Office of Fusion Energy Sciences since 1974.

 

ADDITIVE MANUFACTURING

  MELTIO Systems

Under a strategic technology partnership with Type One, MELTIO is co-developing the NEBULA production platform with their advanced, hybrid additive manufacturing technology and R&D capabilities.

  UW Metals Design & Manufacturing Laboratory  (Dept. of Mechanical Engineering)

MDML specializes in the design of novel alloys and composites, nanoparticle processing strategies, and smart manufacturing to achieve predictable, consistent and reliable metal AM technology. 

 

ELECTRICAL AND MECHANICAL ENGINEERING

  UW Physical Sciences Lab

A 40-year-old major design and fabrication center that has worked on more than 6000 projects including many of the large fusion experimental devices at UW-Madison. PSL employs state of the art machinery, electronics shops, and a highly trained staff in electrical engineering, mechanical engineering and physics. PSL was a major contributor to the design and build of the successful HSX stellarator.

POWER PLANT DESIGN

  UW Fusion Technology Institute (Dept. of Engineering Physics)

Since the 1970, the UW FTI has been designing more than 70 fusion power plants and experimental facilities, covering numerous magnetic and inertial confinement concepts: tokamaks, stellarators, spherical tori, tandem mirrors, and laser/heavy-ion/Z-pinch driven inertial fusion. Its neutronics center of excellence is a nationwide leader in the nuclear field, addressing neutronics, shielding, activation, and environmental management factors for conceptual fusion power plants optimized for reliability, availability, maintainability, and inspectability (RAMI) for all components.

HTS MAGNETS

  MIT Plasma Science & Fusion Center

MIT-PSFC are the world leaders in developing HTS cable and coil for high field electromagnets used in fusion and  other applications.

 

METHODOLOGY

For successful commercialization of a fusion power plant, many interdependent factors have to be taken into account simultaneously, all of which are predicated on delivering the most market responsive solution. Guided by regular feedback from the utility customer and other stakeholders, Type One takes an interoperable approach to R&D with multi-functional teams working to parallel to advance theory, applied science, engineering, and manufacturing. This breaks down silos to cross-pollinate efforts for a shortened time-to-market and an optimized end product.

 

TECH-TO-MARKET

PATH TO A PILOT POWER PLANT

The commercialization campaign has four phases with technical milestones tied to three iterative stellarator builds demonstrating progressive gains in performance, simplification, and cost through the parallel application of 3D magnetic field optimization, industrial additive manufacturing, and non-planar high temperature superconducting electromagnets: 

PHASE

0

PHASE

1

PHASE

2

PHASE

3

Phase 0 is partially underway and initiatives include:

 

Additive Manufacturing

  version one in-house build-out of the NEBULA platform 

  development of the magnet support shell, vacuum vessel, and divertor

  characterize and qualify AM ceramic-matrix and metal-matrix composites for shielding     

     with embedded functional nanoparticles for thermal, neutron, and fatigue resistance

Optimized Stellarator

  physics, conceptual, and engineering design of STARBLAZER stellarator

HTS Magnets

  build of the world's first HTS stellarator magnet in collaboration with MIT and funded by

    the US Dept. of Energy Advanced Research Projects Agency-Energy (ARPA-E) under the

    BETHE fusion energy program

Phase 1 will see the rapid, lean and low-cost AM build of STARBLAZER, a two-meter, 2.5 tesla stellarator design devoted solely to demonstrating the advanced confinement physics needed for net power using the advanced 3D field-optimized configuration.  By focusing on this critical milestone, the majority of R&D risk can be retired early in the campaign and for the least amount of capital.

Phase 2 executes on the build of KITTYHAWK, which incorporates extensive AM components, HTS magnets, and an integrated shield/heat exchange blanket using supercritical water, tungsten carbide and F82H steel. This serves as the most compact and durable radial build for use with catalyzed deuterium-deuterium fuel.

 

The keystone deliverable of KITTYHAWK will be the demonstration of six times net power generation. This will be a a "triple net" measure that factors in total "wall plug" input energy used by the power system, the losses from converting the fusion energy into electricity, as well as recirculating energy fed back into the system to maintain the process.

6X

NET GAIN

SIX TIMES THE ENERGY

NEEDED TO ACHIEVE

BREAKEVEN

Phase 3 will realize the third stellarator, SPITZER-1, which targets larger multiples of net power to support commercial levels of electricity generation. This will be paired with an advanced  and well established steam cycle technology that employs supercritical water (s-H20) as the working fluid to drive a high-heat turbine for a power conversion efficiency  target of >45%.

 

Although deuterium fuel is economically available in large quantities from major industrial gas suppliers, Phase 3 will demonstrate an on-site, end-to-end, water-fusion-electricity solution, using a Liquid Phase Catalytic Exchange (LPCE) column to highly concentrate liquid deuterium from water and extract it as a gas using PEM-based electrolysis. In regions with multiple Type One power plant installations, the use of a centralized deuterium fuel production facility can be deployed to service multiple power plants and well as produce clean hydrogen for transport and industrial uses.

 

The stellarator power unit is designed to provide a steady output of baseload power at its rated 1 GWe capacity with load following made possible by partially bypassing steam going to the turbine and redirecting it to the condenser for extended periods of time. As an added option,  surplus electricity can be stored as hydrogen for instant grid balancing or sold for fuel cell transportation and industrial processes.

GREATER

THAN TEN

TIMES NET

FUSION

POWER

SUPERCRITICAL

WATER 

STEAM CYCLE 

ENERGY

CONVERSION

ON-SITE

DEUTERIUM

AND CLEAN 

HYDROGEN

PRODUCTION

 

ECONOMICAL POWER PLANT

DESIGNING FOR RAPID & WIDESPREAD ADOPTION

DEUTERIUM FUEL &

HYDROGEN FROM WATER

(ON-SITE OPTIONAL)

FUSION

BYPRODUCTS

PROCESSING

(e.g. HELIUM)

1GWe D-D STELLARATOR

UNIT & HEAT EXCHANGER

SUPERCRITICAL H20 STEAM CYCLE WITH TURBINE BYPASS LOAD FOLLOWING

SURPLUS ELECTRITCY STORED AS HYDROGEN FOR INSTANT GRID BALANCING OR SALE (OPTIONAL)

ELECTRICAL SWITCH

YARD

Stellarator physics are inherently suited for power plant operation:

LOW RECIRCULATING POWER

ENERGY EFFICIENCY

STEADY STATE OPERATION

SYSTEM RELIABILITY

NO CURRENT DISRUPTIONS

INVESTMENT SECURITY

STABLE PLASMA OPERATION

OPERATION ROBUSTNESS

HIGH DENSITY OPERATION

MAXIMIZE SYSTEM OUTPUT

​In addition, to disrupt carbon-based fuels, a fusion power plant must meet a combination of low capital costs, rapid construction time, low downtime, and ease of maintenance. The combination of additive manufacturing, high magnetic field, and supercritical water thermal cycle offers the best path for a stellarator plant to achieve these objectives. The following non-subsidized costs are targeted for 10th-of-a-kind power units and nth-of-a-kind balance of plant:

TARGETS

<$2

billion

OVERNIGHT CAPITAL COST

<24

months

CONSTRUCTION TIME

50

years

FIRST WALL LIFETIME

(CAT D-D)

>85

percent

CAPACITY FACTOR

<¢5

kw-hr

COST OF ELECTRICITY

1000

MWe

GENERATION PER POWER UNIT

40

full power

years

PLANT LIFETIME

>45

percent

ENERGY CONVERSION

 

fuel CYCLE

TARGETING SIMPLICITY & LONGEVITY

The force of gravity at the core of the Sun creates tremendous density and unending confinement time that allows hydrogen to fuse at only 15 million degrees. In a fusion device, such conditions are not attainable, necessitating temperatures in the range of 100 million degrees.  In addition, hydrogen is 24 orders of magnitude less reactive to fuse than its neutron-rich isotopes deuterium and tritium - the most viable fusion fuels for use here on Earth.

 

DEUTERIUM-TRITIUM FUEL CYCLE

The easiest fuel combination to fuse is deuterium with tritium (D-T) to create helium and a highly energetic 14 MeV neutron. Tritium does not exist in nature has to be bred in the "blanket" that surrounds the plasma using lithium and the neutrons generated during the fusion process. With 80% of the energy carried by the neutrons, part of the blanket includes a working fluid that slows down the neutrons to thermal energies, and then transfers that heat to a power conversion cycle. Given the high energies of these neutrons and the additional layer required for tritium breeding, blankets used for the D-T fuel cycle have to be over one meter thick. Additionally, structural materials need to operate at very high temperatures of over 550 degrees Celsius  and withstand damage from the high energy neutrons, necessitating more frequent replacement of plasma facing components.

DEUTERIUM

TRITIUM

HELIUM

HIGH ENERGY

NEUTRON

20%

OF ENERGY

IN CHARGED

PARTICLES

80%

OF ENERGY

IN NEUTRAL

PARTICLES

CATALYZED DEUTERIUM-DEUTERIUM FUEL CYCLE

The demonstrated high density, high beta, and large power gain factor of stellarators paired with high field, facilitates the potential use of deuterium as the only fuel. It is "catalyzed" since the tritium and helium-3 produced from the primary D-D reactions are subsequently fused with deuterium in secondary reactions to produce more energy and helium. Unlike D-T, the majority of the fusion energy is not carried by the energetic neutrons, but in the charged particles that have undergone fusion:

Cat D-D Charged Particle Chain

DEUTERIUM

FUSES

TWO FUSION

PATHS TAKEN

PRODUCED TRITIUM AND HELIUM 3 FUSED WITH

ADDITIONAL DEUTERIUM TO BECOME HELIUM

50%

50%

HELIUM 3

TRITIUM

DEUTERIUM

DEUTERIUM

HELIUM

HELIUM

65%

OF ENERGY

IN CHARGED

PARTICLES

35%

OF ENERGY

IN NEUTRAL

PARTICLES

 

The use of Cat D-D requires five times greater confinement performance than the D-T cycle, but it removes numerous cost, complexity, and engineering challenges associated with the D-T system, such as readily available fuel and no need for a tritium breeding blanket or tritium recovery fueling system. Because a much lower neutron flux is generated with tritium extraction, a number of benefits are realized:

        ●  55% thinner build between the magnets and the plasma for a more effective             

            application of the confining fields and a more compact device

        ●  greatly extended service life of components (from years to decades)

        ●  improved ease of maintenance

        ●  increased operational uptime

        ●  reduced neutron activation of materials suitable for recycling and clearance

        ●  no dependency on exotic or limited mined resources

        ●  easier to license by regulatory agencies

TRITIUM EXTRACTION

Fuel cycle R&D will asses the use of ion cyclotron power to pump out a portion of the tritium before it fuses to further reduce the number of 14 MeV neutrons and increase the lifetime of components.  The tritium is stored and naturally converts into helium-3 (half-life of 12.3 years), which is a fuel that produces hydrogen and helium when fused with deuterium and no neutrons.

The viability of Cat D-D as a fuel option for commercial operation will be experimentally assessed based on the confinement physics demonstrated with STARBLAZER.

deployment

FOR RAPID MARKET CAPTURE

REVENUE STRATEGY

Revenues will be generated through the mass production and sale of stellarator power units produced from Type One Staryards strategically located in major markets to remove the high cost and time of transporting large components overseas. A blend of pre-assembled and in inventory components with just-in-time, rapid additive manufacturing will be employed to meet a 2-year plant installation and commissioning target. To participate in revenues from the sale of electricity (~$1.3 trillion per year addressable market), Power Purchase Agreements (PPA) will be secured with utilities and partner deployment firms specializing in Engineering, Procurement, Construction (EPC), as well as Operating and Maintenance (O&M).

MARKET SIZE

Approximately 300 quadrillion BTUs ("quads") of new energy are required by 2050 (US IEA) to meet demand, raising total global energy consumption to 911 quads. This translates to roughly $50 trillion in cumulative investments in generation over the same period. Carbon-based energy is projected to lose 11% of market share during this period but will still comprise a majority share of the energy mix at 69%. This amounts to 125 quads in new carbon-based energy generating 3.6 billion tonnes of additional CO2 per year in 2050.

Energy Mix

2020

32%

26%

22%

15%

2050

fff.png

22%

20%

27%

4%

27%

5%

SEGMENTATION

Type One will initially focus on intercepting new natural gas, coal, and diesel generating capacity in the 1 GWe and greater range and replacement of decommissioned plants for heat and electricity in the emerging markets of OECD Asia. This market represents:

 the largest and fastest-growing region in the world for energy consumption (a projected 

   70% increase from 2018 to 2050)

 new baseload power plants averaging 820 MWe (natural gas) to 1100 MWe (nuclear)

 high fractions of fossil fuels in their energy mix (e.g. China and India draw more than 70%

   of their electricity from coal - US EIA).

 

Type One will spearhead fusion industry-led initiatives for regions to adopt regulations and licensing appropriate for fusion (already underway in the US), provide government loan guarantees on construction, and offer fusion subsidies to utilities.

DISPLACE 

CARBON-BASED

NEW

GENERATION

IN OECD

ASIA

FOR >800MWe

BASELOAD

WITH HIGH % OF

INDUSTRIAL LOAD

FUSION

SUBSIDIES

CLEAN POWER

INVESTMENTS

GOV LOAN

GUARANTEES

ENERGY

DEPENDENCY

GEOPOLITICAL

PRESSURES

REGIONAL

FACTORS

CARBON

TAX

REGULATORY

FRAMEWORK

MANDATED COAL RETIREMENT

EARLY ADOPTER

CULTURE 

POLLUTION

LEVELS

Making up more than half of global energy consumption, the biggest challenge is the decarbonization of industry, which include energy intensive applications such as making steel and cement, desalinization, and upcoming atmospheric decarbonization deployments.

PROCESS & DISTRICT

HEATING

High heat for cement, steel, glass, chemicals, and other uses is 32% of global energy use. 

HELIUM PRODUCTION

Currently, helium is obtained from natural underground reserves that are dwindling.

DESALINIZATION

By 2050, over half of the global population will live in water stressed areas.

MEDICAL ISOTOPE

PRODUCTION

Long half-life isotopes are produced by only 8 nuclear reactors and flown worldwide.

ATMOSPHERIC

DECARBONIZATION

Direct air capture requires a whopping

8.8 gigajoules of energy per ton of CO2.

HYDROGEN PRODUCTION

95% of hydrogen fuel is made with methane, a fossil fuel input that emits carbon dioxide.

POWERING THE HYDROGEN ECONOMY

Currently, 95% of the world's hydrogen fuel is made by reforming methane, which is energy intensive, requires fossil fuel inputs and emits carbon dioxide. In contrast, hydrogen-from-fusion can be economically generated at industrial scale and stored as an emissions-free byproduct of both the deuterium extraction process and fusion reactions. These factors will be a major cost and ecological enabler for the proliferation of hydrogen applications in stored heat and power, industry feedstock, and fuel cell electric vehicles (a 2018/2020 KPMG study discovered that 78% of automobile executives think that hydrogen fuel cell electric vehicles will be the future and 84% think that FCEVs will experience their breakthrough in industrial transportation – particularly where batteries become too heavy for heavy duty trucks above 34 tonnes).

TEAM

PROVEN EXECUTION

FOUNDERS

Prof. David Anderson
DIRECTOR OF STELLARATOR ENGINEERING PHYSICS
CO-FOUNDER

David received his PhD in engineering from the University of Wisconsin in 1984 and has been a world leader in stellarator R&D for over thirty years. Within the UW-Madison College of Engineering, he established the HSX Plasma Laboratory and successfully designed, built and operated the world's first optimized stellarator, which included the in-house manufacture of the complicated magnet coils to precision tolerances. David led the engineering and experimental campaign that proved the impact of optimized stellarators to dramatically improve confinement.

 

David's career in plasma physics and controlled fusion includes various publications, awards and lectures for numerous graduate level courses in plasma physics and electrodynamics.

Dr John Canik
DIRECTOR OF RESEARCH & DEVELOPMENT
CO-FOUNDER

John received his PhD in Plasma Physics from the University of Wisconsin-Madison and led numerous stellarator studies at the HSX Plasma Laboratory. In 2007, John went to work at Oak Ridge National Laboratory (ORNL) under a prestigious Wigner Fellowship. John then headed the ORNL Plasma Physics Theory Group and served as the interim Director of the ORNL Fusion Energy Division from 2019 to 2020.

Prof. Chris Hegna
DIRECTOR OF STELLARATOR PHYSICS
CO-FOUNDER

Chris is the director of the University of Wisconsin Center for Plasma Theory and Computation and is involved in the research activities of three magnetic confinement experiments, the HSX Plasma Laboratory, Pegasus Toroidal Experiment (PTE)and the Madison Symmetric Torus (MST). His primary field is theoretical plasma physics with an emphasis on plasma confinement using magnetic fields. Chris pioneered the use of 3D magnetic field shaping for the physics design of HSX, which demonstrated the confinement enhancement predicted by theory.

 

Chris is heavily involved in the U.S. fusion science program by serving on a number of workshop and conference organization committees, review panels and program advisory committees. In 2014, he received the Excellence in Plasma Physics Research Award by the American Physical Society.

Brian Matthews
DIRECTOR OF ADVANCED MANUFACTURING
CO-FOUNDER

Brian holds a postgraduate degree in nuclear physics with over 23 years of experience in advanced nuclear energy systems design, analysis, licensing, and commissioning.  A proven successful startup entrepreneur, Brian founded a nuclear consulting company in 2012, founded a vertically integrated metal additive manufacturing company in 2015, and co-founded MELTIO, a global additive manufacturing company in 2019.  Brian is an advocate for fusion stellarator technology and has pioneered advanced additive manufacturing technologies to enable its complex design with dramatic cost and lead-time reduction which is fundamental to enabling the first commercial fusion power plants.

Randall Volberg
DIRECTOR OF COMMERCIALIZATION
CO-FOUNDER & CEO

For over 25 years, Randall has been a serial startup entrepreneur, business development director, and R&D project manager across numerous technology sectors from concept to acquisition. A fusion energy enthusiast from the age of eight, Randall has been contributing to the growth of the fusion R&D community full time since 2014, serving in various leadership capacities that focus on broadening the fusion ecosystem of research, private finance, industry collaboration,  government support, and NGO advocacy. 

 

Randall is a co-founder and planning group member of the Fusion Industry Association, the representative body of the international fusion startup community, and an Adjunct Fellow of the American Security Project and a Project Management Professional with certification training from Caltech.

ACTIVE CONTRIBUTORS

Asst. Prof. Lianyi Chen
ADDITIVE MANUFACTURING - MATERIAL SCIENCE

Asst. Prof. Lianyi Chen holds a Ph.D. in Materials Science and Engineering from Zhejiang University and joint affiliations with the Metals Design and Manufacturing Laboratory at the University of Wisconsin-Madison, the Missouri S&T Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, and Center for Aerospace & Manufacturing Technologies.

 

Lianyi's expertise is at the intersection of AM manufacturing, materials science, and nanotechnology. His specializations include new materials, metallurgy, and processes for metal additive manufacturing, metals nanoprocessing, smart manufacturing using advanced sensing and control technologies, metal matrix nanocomposites, lightweight and refractory metals, metallic glasses and in-situ microstructure characterization.

Lianyi has developed a customized laser powder bed AM system and laser blown powder DED system for in-situ high-speed x-ray imaging/diffraction research, as well as led multiple AM projects funded by NSF, DOE’s KCNSC, and Boeing. He has published over 50 papers in peer-reviewed journals, including 1 in Nature, 1 in Nature Communications, 2 in Physical Review Letters, and 4 in Acta Materialia. He is also an inventor of 6 patents.

Dr. Ben Faber
ASSISTANT SCIENTIST

Ben holds a PhD in Physics for the University of Wisconsin-Madison, and is an expert on turbulence in stellarator devices. A computational physicist by training, he currently holds a staff scientist position in the Department of Engineering Physics at UW-Madison working on building new tools and infrastructure for stellarator optimization, with a focus on turbulent optimization.

Lukas Hoppe
ADDITIVE MANUFACTURING SPECIALIST

A mechatronics prodigy, Lukas began developing innovations for additive manufacturing directly after high school with a focus on laser powder bed 3D printers. He then joined MELTIO as the first employee  to co-develop the Coaxial LMD process for manufacturing metal parts from both wire and powder simultaneously. Lukas is currently addressing process optimization and machine design for the Type One NEBULA platform.

Luquant Singh
Electrical Engineer

Luquant is an Electrical Engineering PhD student at UW-Madison interested in stellarator design and manufacturing. He has been a member of the HSX Plasma Laboratory for nearly four years, recently joining the lab as a graduate student. His current work is focused on improving the design of stellarator coils using computational methods. 

Dr. Don Spong
STELLARATOR PLASMA AND COMPUTATIONAL PHYSICS 

Don is a Distinguished R&D staff member in the Theory and Modeling group within the Fusion Energy Division at Oak Ridge National Laboratory. He received his PhD in Nuclear Engineering - Plasma Physics from the University of Michigan. Don’s interests are in energetic particle confinement/instabilities, runaway electron physics, and neoclassical transport in 3D systems. He helped develop the stellarator optimization and analysis methods used for the QPS/NCSX compact stellarator projects. He has served two appointments as a visiting professor at the institute (NIFS) which operates Japan’s largest stellarator project (LHD). He currently serves as the topical group leader for the energetic particle physics ITPA group that advises ITER.

Luis Izet Escano Volquez
MECHATRONICS AND ADDITIVE MFG ENGINEER

Luis Escano obtained his mechatronics engineering degree from INTEC (Instituto Tecnológico de Santo Domingo) in the Dominican Republic. In 2015, he migrated to the United States and joined Dr. Lianyi Chen's metal additive manufacturing lab at the University of Wisconsin-Madison as a research assistant while pursuing a PhD in mechanical engineering. Luis is focused on hybrid AM processes and advanced mechanical design to create a number of the next generation stellarator components being developed at Type One.

 

COLLABORATORS

FROM PHYSICS TO GRID

meltio logo.png
ARPA-E Awardee White_ Transparent Backgr
 

CONTACT

TYPE ONE

ENERGY

OFFICES
345 W Washington Avenue 
3rd Floor
Madison, Wisconsin
USA 53703
STARYARDS
C-D 4185 West Post Road
Las Vegas, Nevada
USA 89118

EMAIL & PHONE

admin@typeoneenergy.com
Tel:  1 608 352 6939

For any general inquiries, please fill in the following contact form:

 

© 2020 Type One Energy Group

  • LinkedIn - White Circle
Dr Lyman Spitzer

Photo by Al Fenn/The LIFE Picture Collection via Getty Images